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ABSTRACT 

Let K be a 3 huge cardinal in a countable model V of ZFC, and let A and B be 
subsets of the successor ordinals < K SO that A U B = {~ < K: a is a successor 
ordinal}. Using techniques of Gitik, we construct a choiceless model Na of ZF 
of height K so that Na ~"ZF+ -~AC~ + For a E A, No is a Ramsey cardinal + 
For /3 E/3, N~ is a singular Rowbottom cardinal which carries a Rowbottom 
filter + For y a limit ordinal, I% is a Jonsson cardinal which carries a Jonsson 
filter". 

Rad in  forcing is one of the most  powerful  tools current ly  being used by set 

theorists. Its appl icat ions are both well known  and extensive,  as witnessed by the 

work of Wood in  [15], Wood in  and F o r e m a n  [3], Mitchell  [11], Git ik [4], and 

others.  

This paper  presents  a fur ther  appl icat ion of Rad in  forcing to the cons t ruct ion  

of choiceless models  of ZF.  Specifically, the following theorem is proven.  

THEOREM 1. Let  V ~ " Z F C  + K is a 3 huge cardinal + A and B are disjoint 

subsets of  the successor ordinals < K so that A U B = {a < K : ~ is a successor 

ordinal".. There is then a model  Na of  Z F  + ~ A C  (in fact, of  Z F  + ~ A C o , )  whose 

ordinals have height K SO that NA ~ " F o r  a E A ,  N,  is a R a m s e y  cardinal + For 

E B, 1% is a singular Rowbot tom cardinal which carries a Rowbot tom filter + 

For 3' a limit ordinal, 1% is a Jonsson cardinal which carries a Jonsson fil ter". 

Note that Theo rem 1 has one of its consequences  that if A = {a < K : a is a 

successor ordinal} and B = O, then NA ~ " Z F  + Every  successor cardinal  is a 
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Ramsey cardinal+ Every limit cardinal is a Jonsson cardinal". This extends 

Theorem 1 of [1], although for the model N of [1], N ~ D C .  

The proof of Theorem 1 relies heavily on Gitik's techniques of [4] and on the 

techniques of [1]. (Gitik has pointed out that an almost huge cardinal suffices to 

prove Theorem 1. See the end of this paper for further details.) Before beginning 

the proof of Theorem 1, however, some preliminary material will be discussed. 

The notation and terminology used in this paper are fairly standard. For x a 

set, TC(x) denotes the transitive closure of x, Ix[ denotes the cardinality of x, 

and ~ denotes the order type of x. If a and/3 are ordinals, then [a,/3], [a,/3), 

(a,/3], and (a,/3) are as in standard interval notation. R(K) denotes the sets of 

rank <K. For K and h cardinals K-<h, P~(A)={x_CA: [x ]<K}  and P~(A)= 

{x 
We assume complete familiarity with supercompact cardinals. For n < w, a 

cardinal K is said to be n huge itt there is a cardinal h > K, a K additive normal 

ultrafilter °t/ on 2 ~, and a sequence ~ = Ao< A~ < "'" < A, = A so that for each 

i < n ,  {xC_h: x N L + I = L } E ° / / .  It is easily seen that ~ concentrates on 

P~- ,(A°). For C E a// and p G C let CrAi = {p f3 A,: p E C}. It is also easily seen 

that for each 0 -  < i < n, °//rL = {CrL: C G  a//} is a K additive normal ultrafilter 

on P~' ' (L)  and that °-//rL witnesses the i hugeness of K with the sequence 

(Aj: j <-i). ~ will be referred to as an n huge ultrafilter on P~° ,(A,) with 

sequence (A, : i <- n ), and for 0 -< i < n, 0?/rL will be referred to as the restriction 

ultrafilter to L. A 1 huge cardinal will be called simply a huge cardinal. 

It is well known (see [5]) that the above definition of n hugeness is equivalent 

to the existence of an elementary embedding j: V~M, M a transitive inner 
model of ZFC so that M~"~_C M, where j"(K) is the ordinal obtained by n 

successive applications of j to K, i.e., for 0-<i-< n, j°(K)= K and j~(K)= 

j(fl '(K)). Further, if 0// is an n huge ultrafilter ~ on P"° ,(A,) with sequence 

(L: i -< n), the embedding j and the inner model M are obtained in the usual 

manner by forming the ultrapower V ""° '("-~/~ and taking its transitive 

collapse. The sequence (L: i -< n) will be so that L =fl(K).  We will always 

assume that for j:  V ~ M  an embedding which witnesses the n hugeness of K, 

both j and M are generated by an n huge ultrafilter ~ on P~° ,(A,) with 

sequence (Ai : i -< n). 

The embedding j associated with the ultrafilter 0-g will sometimes be written as 

je, and the associated inner model will sometimes be written as M~. Note further 

that for ~// a huge ultrafilter on P~(hl), a E[K,A), if we let, for C E ~ ,  

CIa={pAa: pCC and pNaEP,(a)} then qlla={Cra: C~all} is a 

normal measure on P.(a). 
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We will frequently confuse an ultrapower with its transitive collapse. Keeping 

this in mind, let us note that if ~// is an n huge ultrafilter on P~. ,()~.) with 

sequence (Ai: i -< n), then any ordinal a - A. is represented in M~ by [p N a]~ ; 

this parallels the fact that for any normal ultrafilter 0// on P~(.~), any ordinal 

a -< a is represented in M~ by [p • a]~. Note also that, in analogy to the case of 

supercompact cardinals (see [10]), for any ~ r L  we have the commutative 

diagram 

i~, " - - , ~  M ~ 

where for [f]~r~, ~ M~I,,, g a representative of [f]el,,, h: P"--,(a.)---> V defined 

by h(p)  = g(p N I,), k([f]~r,) = [h]~. The fact that k is a well defined elemen- 

tary embedding from Mo~r~, into Mo~ is easily verified. It is also easily shown that 

for any ordinal c~ _< L, k ( a ) =  a. Since each £ is strongly inaccessible in V, the 

preceding fact has an immediate consequence that for any x E V so that 

ITC(x)]< L,  x C M ~ , ,  and k ( x )  = x. 

Our forcing terminology is also fairly standard. We always assume that the 

ground model V is countable so that generic objects can be produced. For P a 

partial ordering, ll-pcb means that the empty condition (weakly) forces ~b. Terms 

in the forcing language associated with P are indicated by ~, ~, or y. We beg the 

question of the meaning of -< by avoiding its usage and saying that q ext p 
means q contains more information than p. 

Two partial orderings will be crucial in the proof of Theorem 1, namely the 
Ldvy collapse and supercompact Prikry forcing. If K < a are regular cardinals, 

the L6vy collapse ordering 

C o l ( ~ , a ) = { p :  p ' K  x a--+a is a function so that ]dmn(p)]< K and so that 
p((a,/3)) </~}, 

with q ext p if q _D p. For a E (r,)t)  a regular cardinal, p E Col(K, a),  

p ra = {((fl, y), 6 ) E p: y < a } and Col(K, ,~)ra = {p Ia:  p E Col(K, A )}. 

If G is V-generic on Col(K,~), then it is easily seen that Gra = {pla" p E G} is 

V-generic on Col(K,A)Ia = Col(K,a). 

Assume now that K < a are cardinals and K is a supercompact. Let ~ be a 

normal measure on P~(a) which has the Menas partition property [9]. Super- 
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compact Prikry forcing on P~(A), 

SC(K,A)={(pl . . . . .  p , ,C):  piEP,,(h), CEall, piC~ps for l< - i< j<-n ,  and 

q ~ C ~  UT=lp, C q}, 

where p C  q means p G q  and / ~ ( q N K .  For 0r, rr 'ESC(K,)t) ,  7r= 

(pl . . . . .  p,,C), rc'=(ql, . . . ,qm,D), re' ext ~" if the following four conditions 

hold: 

(1) n -< m. 

(2) For i -- n, pi = qi. 

(3) For n < i - - m , q ~ E C  

(4) D _C C. 

Note that if )t _> 2", then without loss of generality we can assume that for the 

condition (p l , . . . , p , ,  C), each p, and each q E C is so that p~ N n and q f l r  are 

measurable cardinals. 

For a E [~,)t) a regular cardinal, 

Ir=(p~, . . . ,p , ,C)~SC(K,h) ,  rr[a =(p, n a , . . . , p ,  n a ,  c ta) ,  

where Cra is defined as in the earlier discussion on n huge cardinals. Let 

SC(K, 3.)ra = {zr ta : ~r E SC(K, h )}. If G is V-generic on SC(K, )t ), then it is again 

easily seen that Gra = {~'Ia: 1r E G} is V-generic on SC(K,)t)Ia = SC(K,a), 

where SC(K,a) is defined using ~ I a  = { C r a :  c E  a//}, a normal measure on 

PK (a)  with the Menas partition property. 

We briefly review the definition of Ramsey, Rowbottom, and Jonsson 

cardinals. We assume complete familiarity with the Erd6s partition notation. A 

cardinal K is Ramsey if K ~ ( K )  <~. K is Rowbottom if V)t < K[K-->[K],~£]. r is 

Jonsson if K ~[K]~  ~. A cardinal r carries a Ramsey, Rowbottom, or Jonsson 

filter ~ if every Ramsey, Rowbottom, or Jonsson partition has a homogeneous 

set in ~/. For further information on these cardinals, consult [5] or [6]. 

Finally, if a notion 4> is not absolute, then 4> v will mean the notion ~b in the 

model V. 

We turn now to the proof of Theorem 1. Where convenient, we will adopt 

Gitik's notation of [4]. First, however, we prove a preliminary result which will 

be used in the construction of the forcing conditions. 

THEOREM 1.1. Let V ~ " Z F C +  K is a 3 huge cardinal", and let ]: V-~ M be 
an elementary embedding which witnesses the 3 hugeness of r, with )to, )t~, )t2, 

and )t 3 as in the preliminaries. There is then a generic extension V[ G ] of C with the 
following properties: 

(1) r is huge with a normal measure alto on PK(/I~). 
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(2) The < )t~ supercompactness of K is indestructible under forcing with r 

directed closed partial orderings 0 so that ITC(Q)I < A~. 

The proof of Theorem 1.1 uses the following lemma which is stated in terms of 

n hugeness for n -> 3. 

LEMMA 1.2. Let j:  V ~ M be an elementary embedding which witnesses the n 

hugeness of K, with (A~: O<-i < n) as in the preliminaries. There is then an f:  

K ~ R ( K )  such that for every x so that ITC(x ) I<A, ,  there is an n - 1  huge 

ultrafilter °llx on P~"-2(A._~) with sequence (A~ : 0 -< i -- n - 1) so that ( j~,f)(r ) = x. 

PROOF OF LEMMA 1.2. The proof of this lemma involves a slight modification 

of Laver's argument of [7]. First, suppose that the conclusion of the lemma is 

false. There is then for each f: K ~ R ( K )  an x so that ITC(x)t < )tl and so that 

for all n - 1 huge measures 0// on P*. 2(A._1) with sequence ()t~ : 0 --- i -< n - 1), 

( j~ f ) (K)~X.  Thus, if we let c~(f, ao,a~ . . . .  ,a ,_~).be the statement "ao is a 

cardinal and f:  a o ~  R (ao) is a function so that for some x with ]TC(x)I < a~ and 

all ao additive n - 1  huge measures o// on P~"-2(a,_~) with sequence 

(a~: O<-i<a,_ l ) ,  ( j~ f ) (ao )~X" ,  then by the closure properties of M, 

M P ~b (f, K, A l , . . . ,  A,_~) for each f:  K ~ R (K). Hence, for/~ the normal measure 

on K generated by j, Ao = {a < K : a is an n - 1 huge cardinal so that for all a 

additive n -  1 huge measures ~/ on P~.-~(a._~) with sequence (a,(a~: 1 _<i_< 

n - l ) )  and all f :  a ~ R ( a )  there is an x so that [ T C ( x ) l < a  and 

( j ~ f ) ( a ) ~  x } E  tz, where ( a l , a 2 , . . . , a , - 1 )  = (K, AI,...,An-2). 

As Laver does in [7], we inductively define a function f:  K ~ R ( K ) .  Let 

]'~ = f l a ,  and if a E Ao, let f ( a )  = O. If a E Ao and f:  a ~ R (a) ,  then let x~ be a 

set which witnesses c~(f~,a, a l , . . . ,a ,_~)  and set f ( a ) =  x~ ; otherwise, again let 

f ( a ) = ~ 3 .  It is then the case that j((/~: a E A o ) ) I K = ( f f ) ~ = f  and 

j ( (x , :  a E A o ) ) ( K ) = a n  x which witnesses 4,(/,K,A~ . . . .  ,A, ~) in m and hence 

also in V. 

Let 07/, be the n huge ultrafilter on P~- ,(A,) with sequence (A~: i -< n) which 

generates ], and let k: M~,~,° , ~  M~, = M be the canonical elementary embed- 

ding. From the canonical diagram and the facts that k is the identity on A,_~, 
A 1 

m~,r~. , C_ M~,,r~._, C M~,, and ITC(x)] < A1 we have that x E M~,r~,_, and k (x )  = 

x. Thus, 

{j~,,,._,f)(K) = k ' ( ( j~ , f ) (u))= k- l (x)= X. 

This contradicts the hypothesis that for every n -  1 huge measure ~ on 

P~.-~(A,_~) with sequence (A~: 0 - < i -  < n - 1 ) ,  ( j~ f ) (K)~  X, thus proving Lemma 

1.2. [] Lemma 1.2 
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We return now to the proof of Theorem 1.1. Since we are assuming that K is 3 

huge, by Lemma 1.2 let f :  K~R(K) be a function so that for any x with 

ITC(x)I<A,  there exists a 2 huge measure ~x on W'(h2) with sequence 

(t0,11 ,h2) so that ( j%f)(~)= x. The ultrafilter ~/x which will be used will be for 

the set x which is a term in the appropriate partial ordering for (Co1((2 ")+, r/), K), 

where ~ is the least strongly inaccessible cardinal > K. The set x wilt serve as a 

"coding set" for a portion of the Laver partial ordering by which we force in 

order to obtain the model for Theorem 1.1. It will be the case that Col((2K)+,r/) 

can be replaced by any suitable non-trivial partial ordering which is at least (2" )+ 

directed closed. 

Define in K stages a Laver partial ordering pO using f, at each stage a choosing 

an ordinal 7~, as follows. Po = {Q}, and 3'0 = 0. If h is a limit ordinal, then P~ 

consists of those elements of inverse limit ((Po" a < h)) whose supports are the 

appropriate Easton set of ordinals, and y~ = [.-J°<~3'o. To define P,+I, let 

~r, = L J{6. 6 is an ordinal so that for some 7 < a ,  P~+I=P~*0~ and 

It-p~ "Q~fi  {0} and Or is 6 directed closed"}. P~+I = P~ * 0 , ,  where 0 ,  is a term 

= (O,~) for ~ an for{Q} and "r~÷l "y~ unless for all / 3 < a ,  7~ < a  a n d f ( a ) =  " ~ 
ordinal and () a term so that Ir-po "O  is a partial ordering which is at least 

max(a,o-~) directed closed"; in this case, 06 = 0 and ~/~ = ~. Finally, let 

pO = p~ = those elements of the inverse limit of (P~" a < K) whose supports are 

the appropriate Easton set of ordinals. 

Let now x=(Col((2~)+,r/) ,K),  where Co1((2~)+,rl) is a term for 

Co1((2") *, 7/) in the forcing language associated with pO, and let a//~ be the 2 huge 

ultrafilter on P~'(A2) with sequence (ho,h,,A2) discussed before. Call j%k and 

M%N. Note again that k(K)= A~ and k(AJ = h2; hence, in N, k(P °) is a partial 

ordering defined in k(K) = hi stages using the function k ( f ) =  g in the manner 

specified in the previous paragraph. Since k is the identity on K and f: 

K ~ R ( K ) ,  gIK =f, SO by the closure properties of N, k(P°)IK = pO. Further, 

since we can assume that K = [..J,<Ky~, the choice of f insures that in N, 

P.+, = P~ * Co'--]((2") +, "O), and the definition of k(P °) in N insures that in N, for 

pl the partial ordering so that k(P °) = P. * 15t, It-p. ,,p1 is (2~) + directed closed". 

By the closure properties of N, in V I1-,,,, ,,p1 is (2~) + directed closed". Let 

P = k(P°). P can be defined in V in h~ stages in the manner specified in the 

preceding paragraph using the function g, and P can be written in V as pO, p1. 
Let G O be V-generic on po. We show the existence of a V[G°]-generic set G ~ 

on P '  so that k"G°C_ G°* G'. As I P°[ <-2 ~, the closure properties of N imply 

that k"P°EN, so k"G°EN[G°]. For each p E P  °, k(p)EP°*Pl=P is a 

condition defined in A I steps in a manner analogous to p. Using again the fact 
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that k is the identity on R(K), we can write k(p) as p * p l  where p'  E P~. Since 

I k"G°l <- 2" in either V[G °] or N[G°],  we can use the facts that IFp,, "P~ is (2") + 

directed closed" and k"G ° is a compatible set of conditions to produce (in either 

V[G °] or N[G°])  an upper bound qO to the compatible set of conditions 

{pl. P E G°}. Let G ~ be a V[G°]-generic subset of PI which contains qO. If 
. I o I I G 1. k , ,G.CGI) .G 1. p E G °, then k(p) = p p , so since p q e x t p ,  E Thus, _ 

Let G = G°*G ~. We now show that V [ G ] ~ " K  is huge with a normal 

measure °Ro on P~(A~)". The proof of this fact will be by a slight modifcation of 

Silver's original argument. First, we show that in N, P is an initial segment of 

k(P). In V, P =pO,/51, so in N, k ( P ) =  k(P°)*k(O~). By our earlier work, 
Nt=,,k(po)= pO, -~ . . . .  p = pO /5.,,. P , and V b * Thus, since k(W) is in N the 

portion of k(P) defined through stage A~, and k(/5') is in N a term for the 

portion of k(P) defined between stages A1 and A2, in N P  is an initial segment of 

k(P). 
We next show the existence of a V[G]-generic set H on k(P ~) so that 

k"G C G*H. As I P]---2 ~,, the closure properties of N again imply that 

k"G E N[G]. If we write each p E P as pO,p,  where p ° E  pO and pJ E P ' ,  then 

k ( p ) =  k(p°)*k(pl),where k(p°)E pO./5, = p and k(p~)E k(P') .  By the defini- 

tion of P and the closure properties of N, in N and VIFp " k ( P  ~) is (2',) + directed 

closed". Thus, as before, {k(pl): p E G} has an upper bound q in either V[G] or 

N[G]. Let H be a V[G]-generic subset of k(P ~) which contains q. If 
P = pO. p~ E G = GO* G ~, then by our earlier construction, k (pO) E G °* G ~, and 

as q ext p~, p ~ H .  Thus, k"GC_G*H. 
Using the generic sets G and G */4, we define an elementary embedding/~: 

V[G]--* N[G * H] which extends k by/~(io 0"))= io.,(k(.c)), where r is a term 

in the forcing language associated with P. The proof that/~ is well defined is as in 

Silver's original argument, and the proof that/~ is elementary is by induction on 

the length of formulae and uses the fact that k"G C_ G * H. We can now use k 

and /~ to define a huge ultrafilter °Ro on (PK(A.)) v[°l by C E  °//,)¢:> C E PK(A,) 

and (k(a) :  a < A~)E/~(C). The proof that q/o is a huge ultrafilter on P'(A~) is 

standard (see [5], p. 198). By the fact that k(P ~) is (2*') + directed closed, 

~oE V[G]. 
Finally, we show that V [ G ] b " T h e  < A~ supercompactness of K is indestructi- 

ble under forcing with K directed closed partial orderings O so that ITC(Q)] < 

A~". Let Q be such a partial ordering in V[G], and let 7 < AI be ]TC(Q)I. By 

elementariness, N b " g :  A[---*R(A~) is a function so that for any x with 

ITC(x)I<A2 there is a 2 huge measure 0//~ on P*~(k(A2)) with sequence 

(A~,A2,k(A2)) so that (j~,g)(A~) = x"', thus, it follows that N ~ " M  is the least 
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ordinal moved by j%". In N, let x be (Col(k(7)+, 6),hi), where 6 is the least 

strongly inaccessible cardinal > k(7) and Col(k(7) +, 6) is a term in the forcing 

language associated with P for Col(k (7) ÷, 6) and let °)/x be a 2 huge ultrafilter on 

P*~(k(A2)) with sequence (.~1, t~2, k(A2)) so that U%g)(A,) = (Col (k (y )+ ,  •), Al). By 

the definition of P" and P in V and N and the elementariness of k, 

M~,x~"j .~(P)=P*I~ and ~I. 'R is k(7) + directed closed'" ,  so Mo. ~ " F o r  

= 'R is k(y)  + some inaccessible a < j ~ ( A , ) ,  j%(P) j~,x(P)~*l~ and IFj~p). 

directed closed'"• Hence, by reflection, N ~ " F o r  some inaccessible a < Aj, 

P = P~ */~ and I~-po 'R is 7 + directed closed' ", so by the closure properties of N, 

V satisfies the same statement. 

Let a(, be such an a. It must therefore be the case, since V[G]~'qTC(Q)I  = 
7",  that Q E VIGor,I, where G~,= G r a~,. It is also true, since the above 

argument can easily be modified to show that for any h < K there must be an a 

so that P = P~ */~ and II-p.~ "R  is ([A]<~) + directed closed", that any subset of 

P~(A) in V[G][G'] and any ultrafilter on P~(A) in V[G][G'] (where G'  is 

V[G]-generic on Q) must already be present in V[G,][G'] for the appropriate 

a - > a o ,  a <A, .  Further, it must be the case that for this particular a, 

V[G~]~"O is K directed closed". 

By the choice of f, for any partial ordering S E V[G"] so that V[G°]~ 

" [TC(S) [<A,"  there is in V for x = ( S , a ) ,  S a term for S in the forcing 

language associated with pO, a as above, a 2 huge ultrafilter °?L on P*'(A2) with 

sequence (Ao,A, ,A2) so that (j%f)(K) = (5~, a).  Let A < A~ be any cardinal. If a is 

so that II-e,, " a  > max(iTC(S)l , 2H<~) '', then Laver's original argument [7] can be 

/% (P ) ,  * used to show that M~, ~"Po  is an initial segment of " o /%' (pO)~+, = pO ~, 
• o " " ' R - = 1% (P)0 * {O}, a n d  IFi%(~,o)~ a for K + 1 < j9 < a, 1%(P )~+~ is directed 

closed' ", where I%(P" '))~ * t~ = j% (pO). Further, it is the case that in M~•, IFj%<p,,) 

"j,~• (S) is A~ directed closed". We can thus use Laver's and Silver's arguments to 

show that for any V[G°]-generic set H" on S there is a V[G"][H°]-generie set 
i p " , ,  • H '  on the portion of j.~,~ ~ ) 1o~,~ (S) defined between stages K + 2 and A~ + 1 so 

that for p E G ° * H  ~), j % ( p ) E G ° * H " * H ' ,  i.e., so that j % ( p ) E G ° * H  °_C 

G"*H°*H ~. The embedding j% thus extends in V[G°*H °] to P~(A), 
enabling us to define a supercompact measure 0//, on P~(A) by C E 0/& ¢:~ 

(j%(/3):/3 < A ) E f l ~ ( C )  which, by choice of a, is in V[G"][H"]. Hence, for 

S = T*O,  where T is so that p O , ~ =  p,,, V[GO][HO]= V[G~][G']~"K is A 

supercompact with 07/, a normal measure on P,(A)". By the results of the 

preceding paragraph, V[G] [G ' ]~  "°R, is a normal ultrafilter on P~(A)": Since A 

was an arbitrary cardinal < A,, this establishes Theorem 1.1. [] Theorem 1.1 
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Henceforth, let us take V =  V [ G ]  as our ground model, and let 

j0: V----~ ~'P'~')/°Ro = M be the huge embedding corresponding to the ultrafilter 

~o of Theorem 1.1. As VP'C~,)/°)/o ~ "The < [p fq M]~ supercompactness of 

[p O ~]~, is indestructible under forcing with [p f~ K]~ o directed closed partial 

orderings O so that ITC(O)I < [p N AI]~", Los' theorem and the fact that for 

any p E PK(A1), p fqA1---- K yield A~ ={a  < K: a is < K supercompact and the 

< K supercompactness of a is indestructible under forcing with a directed 

closed partial orderings O so that [TC(O)I < K} is unbounded in K. Thus, by the 

elementariness of jo and the closure properties of M, we can let yo be the least 

ordinal > K so that V and M both satisfy "The < A1 supercompactness of 3~o is 

indestructible under forcing with 3'0 directed closed partial orderings O so that 

I TC(O)I < ,W'. 
Using the embedding jo, we define a Radin sequence of measures /z<~+ = 

(/zo : a < K +) on R (3'o) by/Zo(X) = 1 iff (jo(/3):/3 < 7o) E j ( x ) ,  and for 0 < a < K +, 

/~(X) = 1 iff ( ~ :  /3 < a)~jo(X).  R<~ is supercompact Radin forcing defined 

using /x<K+, i.e., R<~+ consists of all finite sequences of the form 

((po, Uo, Co),. . . ,(p,,  u., C,),(/x<~+, C)) with the following properties. 

(1) For i < j -< n, p~ C pj. 

(2) For i -< n, p~ n K is a < K supercompact cardinal whose < K supercompact- 

ness is indestructible under forcing with p~ N K directed closed partial orderings 

O so that [TC(O)I < K. 

(3)/5, is the least cardinal > p~ n K which is < K supercompact and whose < K 

supercompactness is indestructible under forcing with/5~ directed closed partial 

orderings O so that ITC(O)] < K. We adopt Gitik's notation of [4] and write 
p, =(p, nK)*. 

(4) For i <- n, u, is a Radin sequence of measures on R(/5~) with (u~)0 a 

supercompact measure on Pp-s~(/5~). 

(5) C is a sequence of measure 1 sets for u~. 

(6) C is a sequence of measure 1 sets for /x<~+. 

(7) For each p E (C)o, where (C)o is the coordinate of C so that (C)o E ~o, 

UL p,c p. 
(8) For each p E (C~, /5  = (p ~ K)* and p A K is a < K supercompact cardinal 

whose < ~ supercompactness is indestructible under forcing with p N K directed 

closed partial orderings O so that [TC(Q)I < K. 

Properties (1) and (7) both follow from the fact that /z0 is a supercompact 

measure on P~(70). Properties (4), (5), and (6) are all standard properties of 

Radin forcing. Properties (2), (3), and (8) all follow since/z0 is generated by jo, 

or, equivalently, by °//olyo, so we can assume that each p~ and each p is an 
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element of {p E P"(A1): p f3 r is a < K supercompact cardinal whose < K 

supercompactness is indestructible under forcing with p f3 K directed closed 

partial orderings O so that ITC(Q)] < K and p A Yo = (P f'/K)*}ryo. 

If 

and 

~o = ((po, uo, Co) , . . . ,  (po, u,,  c , ) ,  (t~<~+, C)) 

zr, = ((qo, v0, Do) , . . . ,  (qm, vm, Din), (#<.+, D)) 

are two conditions in R < ~ ,  then or, ext zr0 if the following conditions hold. 

(1) For each (pj, u,, Cj) which appears in zro there is a (% vi, D~) which appears 

in ~'1 so that (% v~) = (p,, uj) and D~ C_ C~. 

(2) W C_ C. 

(3) n -< m. 

(4) If (q,, vi,D~) does not appear in 1to, let (pj, uj, Ci) (or (Ix<,+, C)) be the first 

element of 1to so that pj 71 K > q~ f-/K. Then 

(a) q, is order isomorphic to some q E (G)o. 

(b) There exists an a < ao, where c~o is the length of uj, so that v~ is 

isomorphic "in a natural way" to an ultrafilter sequence v E (Cj)~. 

(c) For/30 the length of v~, there is a function f :/30---> m, so that for/3 </30, 

(D~)f, is a set of ultrafilter sequences so that for some subset (D~); of (Cj)i~0), each 

ultrafilter sequence in (D~)¢ is isomorphic "in a natural way" to an ultrafilter 

sequence in (D~);. 

Note that condition (c) is the appropriate modification of Radin's notion [13] of a 

pair (v,E) being in the shadow of (u,E'). Note also that the natural isomorph- 

isms discussed above are needed since for each q E (C)o, any ultrafilter sequence 

in (C)o that can be paired with q is actually an ultrafilter sequence appropriate 

to supercompact Radin forcing on P ~ ( q )  which must therefore be identified in 

the obvious inductive way using the order isomorphism between q and t7 with an 

ultrafilter sequence appropriate to supercompact Radin forcing on P ~ ( ~ ) .  For 

further information on this and other facts concerning Radin forcing, the reader 

should consult [3], [4], [11], [13], [15], [16]. 
We now define a partial ordering P'  by 

P '  -- R <,+ × l-I Col(a,/3) x H SC(a,/3) 
{(~x,/3): a</3 and a,/3 EAI} {(t*,/3): <*<18 and ad8 ~ A  t} 

(each SC(a,/3) is defined using a normal measure ~ ~ on P~ (/3) which satisfies the 

Menas partition property) ordered componentwise, and let P be the subordering 
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of P '  consisting of all conditions of finite support, also ordered componentwise. 

Let G be V-generic on P. The model NA for Theorem 1, where A is as in the 

statement of Theorem 1, will be a submodel of V[G] and will be Gitik's model 

NA of [4]. We describe this model in more detail below. 

Let Go be the projection of G onto R<~+. For any condition 

7r = ((p0, Uo, Co) ....  , (p., u., C. ), (/z<.+, C)) E R<.+ 

or any condition 

7r = (po, . . . ,p , ,  C) E SC(a,/3), 

call (po,.. . ,p,) the p-part of ~-. Let R ={p:  37r E Go[p Gp-part(Tr)]} and let 

Rt = {p : p E R and p is a limit point of R }. We define three sets Eo, E~, and E2 

by 

Eo = {a : For some 7r E Go and some p E p-par t ( r ) ,  p N K = a}, 

E1 = {a : a is a limit point of Eo}, 

and E2 = El U E3 = {/3: 3 a  E El[/3 --- t~*]}. Let (av: v < K) be the continuous 

increasing enumeration of E2, and let v = v ' +  n for some n E(o. For each 

/3 E [a,,  a,+l) sets C~ (a,,/3) are defined according to specific conditions on v' and 

v in the following manner: 

(1) v ' =  v ~ 0  and n =0 .  Let then p(av) be the element p of R so that 

p n K= a, ,  and let hp(°v): p(a.)--->p(a,) be the order isomorphism between 

p(a~) and p(a~). 

Cl(a,,/3 ) = {h~,o)p O /3: p E R~, p C_ p(a,), and h g(l~v)(/3) E p}. 

(2) u ' ~  v and n =2k.  Let C2(a~,/3)={h'~,.)p n/3:  p E R ,  and if ( v ' ~ 0 ) o r  

(v' = 0 and k > 1), then p(a ,.+2~k-~)) ~ p C_ p(a~)}. 

(3) v ' ~  v and n = 2 k  +1. Let G(a~,a,+~) be the projection of G onto 

SC(a~,a,+l). C3(av,/3) = {p N ~: 3~r E G(a,,c~,+O[ p ~ p-part(Tr)]}. 

(4) n ~ 0  or v ' =  n =0 .  Let H(a~,a~+~) be the projection of G onto 

Col(a. ,a .+0.  C4(a~,/3) = H(a.,a.+~)I/3. 
Intuitively, NA is R (K) of the least model of ZF extending Q which contains, 

for each interval [a.,  a.+~) and each/3 E [a.,  a.+~), C~(av,/3) if v is a limit ordinal, 

C~(a.,B) if v = v '+2k  and v EB ,  C3(a.,/3) if v = v '+2k  +1 and v EB ,  and 

C4(a~,/3) if v E A  U{0}. The fact that in V, each a.  is a < K supercompact 

cardinal whose < K supercompactness is indestructible under a .  directed closed 

forcing with partial orderings O so that ITC(O)I<  K, coupled with the 
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homogeneous manner in which NA is defined will provide the crucial element in 

showing that a~ remains a Ramsey cardinal in NA for v E A. 

To define NA more precisely, it is necessary to define canonical names q~ for 

the a . ' s  and canonical names Ci(v,/3) for the sets Ci(a.,/3). Recall that it is 

possible to decide p(c~.) (and hence p(o~.)) by writing 

(where ~ro > or, > . . .  >gm > 0 are ordinals, no . . . . .  n,. > 0 are integers, and + ,  •, 

and exponentiation are as in ordinal arithmetic), letting 7r = 

((p~j,,u~j,,D~j,)~<_,..,<j,<_,,,(lx<~+,D)) be so that 

min(p, fq K,to 'e°g'"~"-)) = o~ and length(uij,) = min(p~l N K, length(ui0) 

for 1---ji -< n~, and letting p(a~) be p , , , .  Further 

D. = {r E P: rrR<~+ extends a condition 7r of the above form} 

is a dense open subset of P. _a~ is the name of the a~ determined by any element 

of D~ 71 G;  in Gitik's notation of [4], _a. = {(r,6.(r)): r E D~}, where a~(r) is the 

a .  determined by the condition r. 

The canonical names C~(t,,/3) for the sets C~(c~o,/3) are defined in a manner so 

as to be invariant under the appropriate group of automorphisms. Specifically, 

there are four cases to consider. We again write 7, = u '+  n and let/3 E [a.,a.+~). 

We also assume without loss of generality that as in [4], a.+, is determined by D.. 

(1) u ' =  u ~ 0  and n =0 .  C~(u,/3) is then the name for {h~.)~,)p 71/3: =IrE 
P[r ~ D~ f"l G, p ~ p-part  (rtR<.+), p C_ p(a~)(r), p ERt  Jr, and h~)~,)(/3) E p} 

where p(a.)(r) and h,(~(,) are the p(a~) and hpc..i determined by the condition r 

and R~Ir is the portion of Rt determined by r. Note that this definition is 

unambiguous, since for any r and r' so that r,r'~ D. r3 G, p(a~)(r) = p(a~)(r'). 
In Gitik's notation, 

C,0,, /3) -- {(r,(~[R<~*)r(,~(r),/3)): r ~ Do}, 

where for r E P, 7r = rrR<~÷, ~I(a.(r),/3) -'- {h~o.)~,~p N/3: p ~ p-partQr),  p C_ 

p(a.)(r), p ~ R~I~, and h~.~,~(/3)Ep}.  

(2) ~, E A, u' ~ u and n = 2k. Note that as in [4] we can assume without loss of 

generality that for any r G D.,  r determines a ..+~_.~). C~0,,/3 ) is then the name 

for {h~o.)~,)p N/3: ~r ~ P[r ~ D. ~ G, p ~ p-part  (rIR<~+), p(o~ , ,+~-o)(r)  C_ p C_ 

p(o~.)(r), p ~ R Ir, and h~,.×,)(/3)~ p}, where R Ir is the portion of R deter- 

mined by r. The unambiguity of this definition again follows from that fact that 

for r,r' E D~ f3 G, 
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p(a,,+2<k ,))(r)-- p(a,,+2tk_~))(r') and p(a~)(r) = p(a~)(r'). 

In Gitik's notation, 

C~(~,, 3)  -- {(r,(~rR<~+)[(a~(r),/3): r E D.}, 

where this time for r ~ P ,  7r=r IR<.+ ,  1rI(a.(r),/3)={h'~oo)<.)pA/3: p e p -  
part(Tr), p E R [Tr, p(a ~,+2(k-,))(r) C p C p(a.)(r), and hp~..×,)(/3) ~ p}. 

(3) y E A ,  u ' ~ v  and n = 2 k + l .  C3(u,/3) is then the name for {pO/3: 
3r E P[r E D. fq G, p E p-part(rISC(a.(r), a~+~(r)))]}. As before, this definition 

is unambiguous. In Gitik's notation, 

C3(u,/3) = {(r,(~ISC(a.(r),a.+~(r))I(a.(r),/3)): r E D.}, 

where for r ~ P, 7r = rrSC(a.(r),d.+~(r)), 7rr(a.(r),/3) = {p O/3: p E p-part(Tr)}. 

(4) y E A  U{0}. C4(u,/3) is then the name for {p[/3: 3 r E P [ r E D .  AG,  
p E r[Col(a.(r),a.+~(r))]}. As before, this definition is unambiguous. In Gitik's 

notation, 

C4(v,/3) = {(r,(r[fol(a~(r),a~+~(r)))[/3): r E D~}. 

Let ~3 be the group of automorphisms of [4], and let 

4 

C(G) = [.J {Tr(C(v,/3)): 7r E ~, 0 < v < K, and/3 E [v, K) is a cardinal}. 
i=1  

C ( G ) =  [.J~=~{io(Tr(C(v,/3))): 7r E ~q, 0 <  v < K, and/3 E [v,K) is a cardinal} = 

io(C(G)). Na is then the set of all sets of rank < ~ of the model consisting of all 

sets which are hereditarily V definable from C(G), i.e., Na = R(~) "~°~c~)) 
Gitik [4] has shown the following facts about NA. 

(2) Na ~ ZF + --3AC~. 

In addition to these facts, we know that for any set x C_ a~ in NA, a. arbitrary, 

x = {a < a . :  f ' [G]  ~ ~b(a, io(Tr~(C,(v~,/30)),...,io(Tr.(C.(u.,/3.))),C(G))}, 

where ij is an integer, 1 <- j -< n, 1 -< ij < 4, and ~b(xo . . . . .  x.+ 0 is a formula which 

may also contain some parameters from I7" which we shall suppress. 

Let 

e= [-I [ ]  
{ i i : i  j = 4 . j ~ . }  {~:ij=3.j~,~} 

For ~r~R<.+, let ~ r r a ~ = { ( r , u , D / ~ :  rn~-<a~},  and for p~/5, p =  
(p,,...,pm,~rl, m <-n, 7r~R<~+, let p[a~ =(q~ .... ,qm,~rra~), where qj =pj if 
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a~j -< ct~ and q~ = O otherwise. In other words, p I ~  is the part of p below a~. 

Without loss of generality, we ignore the empty coordinates and let /SIa~ = 

{pta~ : p E/5}. Let Gra~ be the projection of G onto/Sra~. Gitik has also shown 
(Theorem 3.2.11, [4]) the following. 

(3) For any x C_ a~ as in the above, x E V[GIa~]. Further, the elements of 

/sra~ can be partitioned into < a~.~ equivalence classes with respect to the 

sequence C,(v~,/3~) . . . .  , C.(~,,,/3,) (the "almost similar" equivalence classes of 

[4]) so that if a < a~, r is a term for x, and pIFg E r, for any q in the same 

equivalence class as p, q II-a ~ r. 

Fact (3) above essentially says that any subset of a~ in NA is determined by a 

partial ordering of cardinality < a,+l. This will be the key fact in the proof of the 

next three lemmas. 

LEMMA 1.3. If v + 1 E A, then NA ~ "N~+~ is a Ramsey cardinal". 

PROOF OF LEMMA 1.3. If f E NA is SO that f: [N~+~]<o--->2, then since f can be 

coded by a subset of N~+~, facts (1) and (3) above tell us that for some term 7(x, y) 

which may also contain elements of ~', r (x ,y)  denotes f in I~'[G[a~+l]= 

IS'[C4(v + 1,fl),Gra~] for the appropriate /5[a~+1 = Col(a~+l,/3)x titan. (We 

will have £/[G[a,+~]~"f(t) = i"  iff 3p E G[a,+l[p It- ~'(j,_t)] where i is a term for 

0 or 1.) Further, as in Theorem 3.2.11, (iii) of [4], if ([p~]: y < 6 < a~+~) is an 

enumeration in I7" of the almost similar equivalence classes of/sra~ with respect 
to the sequence C,(vl ,/3~),..., C.(v, , /3,) ,  it is the case that if _t is a term (which, 

without loss of generality, can be assumed to be in 17') for an arbitrary element t 

of [a~+~] <~ and p ECol(a~+~,/3) is so that for some qoEP[a~, (qo,p)ll-z(O,t_), 
then (q~, p)It-r(0_,_t) for any ql so that q0 and q~ are in the same equivalence class. 
(This is also true if (qo,p)lt-r(l_,t_).) This means that the elements of ([pv]: 

3' < 8 < a~+~) completely determine f when forcing over IS'[C4(v + 1,/3)] with 

/Sra~. More generally, if x represents any subset of a~+~ in V[G ra~+~], then ([p~ ]: 

3' < ~ < a~+~) completely determines x when forcing over ~'[C4(v + 1,/3)] with 

By the definition of the partial ordering P, since Col(a~+~,fl) is a~+~ 

directed closed and /3 < K, 17[C4(~ + 1,/3)]~"a~+~ is supercompact". Hence, 

17"[C4(v + 1,/3)]~"a~+~ is a measurable cardinal"; therefore, let /z be a fixed 

normal measure on a~+~ in ~'[C4(v+1,/3)].  Since any subset x of a~+l is 
determined by a set of equivalence classes of conditions of cardinality < a~+~, 

the L6vy-Solovay arguments [8] show that /~' ={x C_ a,+~: x contains a /~ 

measure 1 set} is a normal measure on ol~+~ in Q[C4(v+I,/3),GIa~]. Thus, 

Rowbot tom's  theorem [14] shows that there is a set x E tz' which is homogene- 



VOI. 52, 1 9 8 5  CONSECUTIVE LARGE CARDINALS 287 

OUS for f ;  without loss of generality, we can assume that x E V[C4(v + 1,/3)]. As 

the definition of NA insures that V[C4(v+I,/3)]___ Na, x E N a .  This proves 

LEr"MA 1.3. [] Lemma 1.3 

LEMMA 1.4. I f  v + 1 E B, then Na ~ "~.+, is a singular Rowbottom cardinal 
which carries a Rowbottom filter". 

PROOF OF LEMMA 1.4. Let v + 1 = v '+  no where v' is a limit ordinal and 

0 < no < to. We consider two cases, namely no = 2k and no = 2k + 1. First, fix f:  

[~,+t] <~ ~ y a Rowbottom partition on [~o+~]<~ in NA. As before, since f can be 

coded by a subset of ao+l, f E rV[G[ot~+t] for the appropriate ffta,.+x. 

If no = 2k + 1, then fira,,+l =/sIa~ x sc(a,+~,/3) for the appropriate/3. Since 

SC(a,+~ ,/3) = SC(c~,,+I, a~+2)r/3, it will be the case that for each p E C3(v + 1,/3), 

V ~ " p  fq K is a measurable cardinal", i.e., for each member p of the supercom- 

pact Prikry sequence, ~ '~  "p f3 r is a measurable cardinal". Thus, since forcing 

with SC(c~,+~ ,/3) adds no new bounded subsets of a.+~, ~r[C3(v q- 1,/3)]~"p f) K 

is a measurable cardinal" if p E C3(v + 1,/3). Let therefore (7.: n < to) be the 

increasing enumeration of {p fq K: p E C3(v + 1,/3)}, and let ( ~ , :  n < to) be a 

sequence so that V[C3(v + 1 , / 3 ) ]~"~ ,  is a normal measure on y ," .  Since V, 

~"[C3(v + 1,/3)], and V[(y, : n < to)] all have the same bounded subsets of cr,+~, 

it is the case that ~'[(y. : n < to)] ~ " ~ ,  is a normal measure on % ' ;  further, the 

sequence (q/.: n < to)  can be chosen so that (q/,: n < t o ) E  V[(y,: n <to)].  

Hence, since V[(y,: n < to)]C_ NA, it is possible to define in NA 

N A .+~ = {x _ a.+~: 3 n V m  >- n[x fq 7,. E o//,,]}. 

N A 
Clearly, ¢l/~+t is a filter on ao+~, and NA ~"a~+~ is singular". We show that 
N A ~ , , ~  NA ~+~ is Rowbottom". 

First, note that since V[C~(u + 1,/3)]#"cof(a,+~) = to", a theorem of Prikry 

[12] shows that °//~[+c3¢"+~'°)l={x C_a.+~: x E V[C3(v+I, /3)]  and 3 n V m  > 

n[x Fly,,, E°//.,]} is in I7"[C3(v+1,/3)] a Rowbottom filter on a.+~. Also, 

since the generic projection on SC(a~+~,fl) of G, G(a,.-,,-~,a,.+~)t[3 is so that 

V[C3(v + 1,/3)] = f/[G(a,,+l,a,,+::)r/3] (the generic set is canonically definable 

from the generic sequence), as in the previous lemma we know that f is 

completely determined by ([p.]: ~ < 6  <a.+~) when forcing over 

I7"[C3(v +i , /3)]  with Pra . .  Thus, the L6vy-Solovay results again imply that 

(.'[C~(v +l , /3 ) ,Gra~]  = I?'[Gra~+,]~"a~+~ is a Rowbottom cardinal and any 

Rowbottom partition has a homogeneous set x E a//~t+c~.+~,o)l,,. (An n so that 

Vm -> n [x Fl 3',, E o//,, ] will be so that y, > 6, 6 as immediately above.) Since 
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9[C3(v+I,/3)]cNa,_ ,~.°~[c~(~+l°)lc- ~ . ~ 1 + 1  _ , so any Rowbottom partition f: 

~+q  3, has a homogeneous set x E ~ A  v + l  • 

If no = 2k, then /SIa.+~ =/SIa .  × R(a~,+2(~_,),a.,+2~), where 

R (a.,+2~k ,),a.,+2k) =/~ = {(r, u,D) E R<~*: a o,+2~ ~)< r n K_< a ~,+2~}, 

i.e., R (a .,.2(k-1), a .,+2k) is the portion of the Radin forcing between a .,+2(k 1) and 

a ~.+2k. Let h be the hq~o,+2~} for the q which determines a ~,+2k. For any (q,u.D) 

so that q n K = a~,+2~, as in [4] it must be the case that length(u)= 1. Hence,/~ 

must be isomorphic to a supercompact Prikry partial ordering on P~v,+2k (a .,+2k+1); 

in particular, forcing with R will add no new bounded subsets to o~.,+2k, the 

generic sequence (h"p n/3:  h"p N/3 E C2(u'+2k,/3)) will code a cofinal to 

sequence, and for any /3 E[a.,+2k,a.,+~k+~) and any p so that h"p n/3 E 
C2(v' + 2 k,/3), V[ (~ ] ~ "(h"p n /3 )  n K = p n K is a measurable cardinal", where 

is the projection of the generic set G onto/~.  (The facts that h is the order 

isomorphism of q onto ~ and q n K is an ordinal < ~ imply that (h"p n/3) n 
K = p n K = p n K.) Thus, let (y." n < to) be the sequence which enumerates in 

increasing order ((h"p n / 3 ) n  K: h"p n/3 E C2(v'+2k,~)), and let ( ~ . :  n < to) 

and (~V." n < co) be a sequence of normal measures and of well orderings 

definable in V[(y.: n < to)] C_ V[0]  so that in V, V[(3'. : n  < to)], or V[(~], ~/. 

is a normal measure on Y. and 0/4/'. well orders ~ . .  As 9[(3,.: n <to)]C_Na, 
N A 

NA ~"a~.+2k is singular", and we can again define the filter ~.+2k in Na by 

N A .,+2k = {x C_ a .,+2k: 3nVm >- n[x n 3,,. E 07/..]}. 

Since f will be determined by forcing over 9[(~] with /5Io~ = ([p,~]: o- < 3 < 

a.+l) (we use the fact that a.+~ = a~,+2k), the L6vy-Solovay arguments again 

imply that 9[(3, Glad] = ~ ' [GIa .+l ]~"(~ 'o :  mo <- n < to) is a sequence so that 

o7/. _ {x C 7. : x contains a ~ .  measure 1 set} is a normal measure on 3'. ", where 

mo is the least integer so that 3',.o > 6, ;~ as immediately above. 

Prikry's construction [12] of a homogeneous set x for f in 9[Glad+t] so 

that 3m >- moVn >- m[x n 7° E ~'.] involves inductively defining a sequence 

ix.:  mo -< n < to) of sets so that x. E ~ ' .  and so that U . ~ x .  = x. The construc- 

tion of x.+~ is accomplished by choosing a set based on x., the partition f, the 

partition fI[3,.+l- 3,.]<~, and certain partitions canonically defined using f and 

lilY.+1- 3'.]~. Since we can assume that x. E ~ . ,  the choice can be made by 

using the well ordering °W.+I to pick the appropriate homogeneous sets and 

hence is absolute given the partition f and the sequences (3'.: mo -< n < to), 

(ql. : mo -< n < to), and (~W." mo -< n < to). Since each of these three sequences is 
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N A 
in NA, the set x can be constructed working in NA. Thus, x E NA, x E ~/o,.2k, 

and x is homogeneous for f. This proves Lemma 1.4. [] Lemma 1.4 

LEMMA 1.5. If v is SO that NA ~ "u  is a limit ordinal", then NA ~"1~ is a 
Jonsson cardinal which carries a Jonsson filter". 

PROOF OF LEMMA 1.5. Let lENA be so that NA~"f: [N~]< ' - - - ) lg .  is a 

Jonsson part i t ion".  Since u -< 1~ = a~ and f can be coded by a subset of a, ,  it 

will be the case for the appropriate/SIa~ that f E V[GIa~] and ~/[GIa,]~ "a~ is 

a singular cardinal". Further,/5[a~ can be factored into R<K*Ia~ x 0,  where O is 

a product of partial orderings of the form Col(a.,,/3~) and SC(a~,,/3~) so that each 

a~, and each/3~ is less than a~ and R<~+Ia~ = R '  = {qla~: q ~ R<~*}. It is thus the 

case that I Ol  < a~. 
Let G '  be the projection of G onto R'.  As R '  is the portion of R<.+ 

through a. ,  G '  will contain a Radin generic sequence through a~, i.e., E4-- 

{ a < a ~ : a E E o }  and E s = { a t < c t ~ : a ~ E ~ }  will both be Radin generic se- 

quences through a~ which witness the singularity of a. .  By the definition of Nn, 

Es E NA. 
Let (tr,: r / <  v) be the continuous increasing enumeration of {a ~ Es: 

a > I Q I}. It is then possible to define the sequences (/3, : ~7 < v), ('y,: 7/< v}, 

(el/, : r / <  v), and (3V~: r / <  v) in V[Es] by 

* i f ~  a ,,+2k for 0 -< k < to and some limit ordinal ~/', O"71 

/3. = 

~r, if o'~ = a ,,+2k+~ for 0 --- k < to and some limit ordinal rt', 

y~ = the least measurable cardinal in Q >/3~, ~ = a normal measure in V on 

3'~, and 3V, = a  well ordering in V of o?/,. It will now be the case that 

Q [ G [ a . ] ~ " 3 , ,  is a measurable cardinal and ° / / '={x  C_3,,: x contains a 0//, 

measure 1 set} is a normal measure on y , " .  To see this let, for q E R' ,  

q r ~ l = { ( r , u , D ) E q : r n K < - o ~ }  and q ' = { ( r , u , D ) E q : r n K > ~ r ~ } .  

This allows us to write R '  = R"  × R", where R '~ = {qtr/: q E R'} and R"  = 

{q": q E R ' } ;  further, it allows us to write G ' = G ' × G  ~, where G ~ =  

{q[rt: q ~ G'} and G" = { q ' :  q E G'}. By the definition of 3', and /3~, IR']< 
22~< 3'~. Also, for each q E R "  and each ( r ,u ,D)~q ,  the definition of R<K* 

insures that r n K > 3'~ ; hence, each ultrafilter in the ultrafilter sequence u will 

be at least 3'~ additive. Thus, since R"  is a Radin forcing partial ordering, it must 

have the Prikry property, i.e., for any formula 4, in the forcing language 
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associated with R"  and any q E R ~ it is possible to extend q to a condition q' so 

that q' decides 4) only by shrinking the measure 1 sets present in q. The usual 

Prikry argument then yields that I?[G"] and V have the same subsets of y.. 

Since IR ' .x  0 1 <  y. in both V and V[G"] ,  the Ldvy-Solovay arguments yield 

that in the model obtained by forcing over V[G 7 ] with R '. x O, i.e., in 'V[GIc~.], 

77 is a measurable cardinal and ~/'7 is a normal measure on y.. 

Define in NA ~U.A={x __Ca.: ::16Vrt -->3[X N "/~ E OR~]}. Note that OR~A E NA 

since (OR7 : ~ < u) E (/[ Es] C NA . OR ~ is clearly a filter. To see that NA ~ "OR ~ is 

a Jonsson filter", first note that Prikry's theorem of [12] also states that it is 

possible to construct in "v'[GIa.] a homogeneous set x for f so that 33Vrl -> 

6Ix f-1 y. E OR'.]. As in Lemma 1.4, it is possible to replace each °//' 7 with OR.. 

Further, as in Lemma 1.4, the construction of x can be accomplished via an 

inductive construction of a sequence (x~ : rl < u) so that (-J~<.x7 = x which uses 

the partition f, the partitions fI[y. - [.-J~<Ty~] <~, the well ordering 3V~ to choose 

the OR. measure 1 set used to construct x., and certain partitions which are 

canonically defined in terms of f and f t[Y7-  U~<Tyo] <~. As before, this 

construction can be carried out in any model of ZF which contains (77 : ~ < u), 

(OR.: 77<u) ,  and (~4/'~: r t < u ) .  Since (YT: "q<u) ,  (OR.: r t < u ) ,  and 

(°WT: ~ < u ) ~ f / [ E s ] C N A ,  x is definable in NA. As xEOR~ ~ and x is 

homogeneous for f, Lemma 1.5 is proven. 

Lemma 1.1, Theorem 1.2, and Lemmas 1.3-1.5 complete 

Theorem 1. 

[] Lemma 1.5 

the proof of 

[] Theorem 1 

that OR~A is a We remark that Prikry's construction of [12] actually shows 

y-Rowbot tom filter, where y = cof(a,).  

In conclusion, we note that, as pointed out to us by Moti Gitik, it is possible to 

derive the conclusions of Theorem 1 from an almost huge cardinal K instead of a 

3 huge cardinal. A sketch of the argument is as follows. Since as in [4] the model 

NA can be constructed using an almost huge cardinal K, it suffices to show that if 

V ~ " K  is almost huge" and j :  V ~ M  is an almost huge embedding with 

j ( K ) =  A~, then it is possible to generically extend V so that 

j* :  V [ G ] ~ M [ G  *H]  is an almost huge embedding extending j for H E V[G] 
and V [ G ] ~ " T h e  < A~ supercompactness of K is indestructible under forcing 

with K directed closed partial orderings O so that ITC(Q)I < AI". To do t h i s ,  

note that since V ~ " K  is < A~ supercompact and A~ is strongly inaccessible", as 

in [1] or [7] it is possible to show that V ~ " T h e r e  exists a function f :  K--*R(K) 

so that for every x with ITC(x)I-< A < A1 there is a supercompact ultrafilter °R 
on P,(A) so that j~(f)(K) = x". Using this f, define p0 as in Theorem 1.1, and let 
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p = pO,pi ,  where 15, is a term for the portion of j(P) defined in M between K 

and A1. Let G be V-generic on P. As in [1], [7], or Theorem 1.1, it follows that 

V[G]~"K is <A1 supercompact and the < A1 supercompactness of K is 

indestructible under forcing with K directed closed partial orderings O so that 

I r c ( o ) l  < a,". 
To see that V [ G } ~ " K  is almost huge",  first note that in M, j ( P ) =  

p O , p a , / 5 2 =  p , /52 ,  where 152 is a term for the portion of j(P) defined in M 

between A1 and j(hl)  = h2 using j(f) .  As V ~  "K is almost huge",  the inner model 

M can be chosen so that V~"[A2[ = h f ' .  This allows us to carry out in V[G] an 

inductive construction in A2 stages as follows. Let Po = Ho = {&}. For )t a limit 

ordinal, if (P~ : a < A) and (Ha : a < A) are the portions of p2 and H defined 

through stage A, then P, and HA are either the inverse or direct limit of 

(P~ : a < )t) and (H~ : a < h) (as calculated in M), the type of limit depending 

upon the nature of h in M. At successor stages a + 1, let @+1 in M[G][H~] be 

so that P,+I = P, * 0,+~. As V I="I P I = A,", V[G] ~ "l G I=  A,"; further, since 

there is an analogous inductive sequence (R, :re < )tl) which defines P~ in 

V[G°], and since V[G] ~ "1R, [ < A1" for each a < AI, for each a + 1 < A2, 

V[G] ~ "S~+1 = {r :::lp E G[j(p) = q *r and r ~ O,+,]} has cardinality < A~". 

Therefore,  since in M II-p "Each P,+~ is A~ directed closed" and M <~' C_ M, V[G] 
"Each Oo+1 is A1 directed closed". Thus, in V[G] let s,+, E O,+1 extend each s 

in S,+~. Since we can assume that M[G][H,] ~ we can let 

D = (D~ :/3 < A1) be an enumeration in V[G] of the dense open subsets of O,+l 

found in M[G][Ho]. We can then construct a sequence (q~ :/3 < A~) in V[G] so 

that qo @ Do, qo ext s , , ,  for each/3 < A~, q~ E D~, and for each 3' </3, q~ ext q~. 

This in turn allows us to define in V[G] the set H'+~ = {p :3/3 < A~[q~ ext p]}, a 

set which can be verified to be M[G][Ho]-generic on O,+1. The set H,+~ = 

H,*H',+~ is then M[G]-gener ic  on P,+I. If we let H be the direct limit of 

(Ha : a  < A2), then it is the case that H is M[G]-gener ic  on p2 and j"G C G *H. 
We can now define j* as in Theorem 1.1 and show that j* extends j and 

M[G * H ]  <~' C M[G* H], thus showing that K is almost huge in V[G]. 
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